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BACKGROUND: PM2:5 precursor emissions have declined over the course of several decades, following the implementation of local, state, and federal
air quality policies. Estimating the corresponding change in population exposure and PM2:5-attributable risk of death prior to the year 2000 is made
difficult by the lack of PM2:5 monitoring data.
OBJECTIVES: We used a new technique to estimate historical PM2:5 concentrations, and estimated the effects of changes in PM2:5 population expo-
sures on mortality in adults (age ≥30 y), and on life expectancy at birth, in the contiguous United States during 1980–2010.
METHODS: We estimated annual mean county-level PM2:5 concentrations in 1980, 1990, 2000, and 2010 using universal kriging incorporating geo-
graphic variables. County-level death rates and national life tables for each year were obtained from the U.S. Census and Centers for Disease Control
and Prevention. We used log-linear and nonlinear concentration–response coefficients from previous studies to estimate changes in the numbers of
deaths and in life years and life expectancy at birth, attributable to changes in PM2:5.

RESULTS: Between 1980 and 2010, population-weighted PM2:5 exposures fell by about half, and the estimated number of excess deaths declined by
about a third. The States of California, Virginia, New Jersey, and Georgia had some of the largest estimated reductions in PM2:5-attributable deaths.
Relative to a counterfactual population with exposures held constant at 1980 levels, we estimated that people born in 2050 would experience an
∼ 1-y increase in life expectancy at birth, and that there would be a cumulative gain of 4.4 million life years among adults ≥30 y of age.

CONCLUSIONS: Our estimates suggest that declines in PM2:5 exposures between 1980 and 2010 have benefitted public health. https://doi.org/10.1289/
EHP507

Introduction
Implementing the Clean Air Act has markedly improved outdoor
air quality in the United States (U.S. EPA 2011a, 1997). The
National Ambient Air Quality Standards for common air pollu-
tants, first promulgated in the 1970s, set health-based ambient
standards for six criteria pollutants: particulate matter, ground-
level ozone, carbon monoxide, sulfur dioxide (SO2), nitrogen
dioxide (NOx), and lead (Bachmann 2007). Emissions of these
pollutants have declined by about 60% since 1980 (U.S. EPA
2016). While ambient data for fine particle matter concentra-
tions (those 2:5 lm and smaller: PM2:5) were not regularly col-
lected on an extensive spatial scale until the late 1990s (U.S.
EPA 2016), concentrations of monitored pollutants that are
precursors to PM2:5, including SO2 in particular, have declined
by approximately 80% during the period from 1980 to 2010
(U.S. EPA 2016).

Fine particles are of particular interest to health scientists and
policy makers because of evidence from controlled human

exposure, toxicological, and epidemiological studies that acute
PM2:5 exposure (over hours or days) is associated with adverse
health outcomes, including aggravated asthma, hospital and
emergency department visits, and premature death (Brook et al.
2010; U.S. EPA 2009; WHO 2013). In addition, epidemiologic
studies have consistently reported that chronic (i.e., years-long)
exposure to fine particles is associated with an increased risk of
premature death (U.S. EPA 2009; WHO 2013). Systematic
reviews by the U.S. Environmental Protection Agency (U.S.
EPA) and the World Health Organization have concluded that
there is a causal relationship between short- and long-term expo-
sure to fine particles and the risk of premature death (U.S. EPA
2009; WHO 2013).

Air pollution human health impact assessments have used
findings from epidemiological studies to estimate the human
health impacts of air quality policies. These assessments
model PM2:5 emissions, air quality, and exposure to estimate
counts and rates of adverse outcomes (Anenberg et al. 2011;
Caiazzo et al. 2013; Fann et al. 2011a, 2011b, 2013; Lim
et al. 2012; U.S. EPA 2009). Results of these analyses can
help inform a chain of accountability that describes the events
linking air quality policies to human health outcomes. As
described by the Health Effects Institute, this chain includes
five stages: a) regulatory action; b) changes in emissions; c)
changes in ambient air quality; d) changes in exposure/dose;
and e) human health responses (Health Effects Institute 2003).
However, incomplete data on emissions, monitoring, personal
exposure, and health outcomes have made it difficult to eluci-
date the links in this chain.

Photochemical transport models, such as the Community
Multi-scale Air Quality Model, use archival emissions and mete-
orology data to predict pollutant concentrations (Byun and
Schere 2006; U.S. EPA 2012a). The resolution of emissions
inventories across sources and locations has improved since
2000, making it possible to model changes in air quality with
greater confidence. However, prior to the advent of the extensive
national regulatory PM2:5 monitoring network in late 1990s, it
was difficult to characterize changes in ambient PM2:5 exposures

Address correspondence to N. Fann, U.S. Environmental Protection
Agency, 109 T.W. Alexander Dr., Mail drop C539-07; RTP, NC 27711 USA.
Phone: (919) 541-0209. Email: Fann.neal@epa.gov
Supplemental Material is available online (https://doi.org/10.1289/EHP507).
The authors declare they have no actual or potential competing financial

interests.
The views in this manuscript are those of the authors alone and do not

necessarily reflect the policy of the U.S. EPA. The views expressed in this
document are solely those of the University of Washington, and the U.S. EPA
does not endorse any products or commercial services mentioned in this
publication.
Received 13 May 2016; Revised 19 June 2017; Accepted 20 June 2017;

Published 6 September 2017.
Note to readers with disabilities: EHP strives to ensure that all journal

content is accessible to all readers. However, some figures and Supplemental
Material published in EHP articles may not conform to 508 standards due to
the complexity of the information being presented. If you need assistance
accessing journal content, please contact ehponline@niehs.nih.gov. Our staff
will work with you to assess and meet your accessibility needs within
3 working days.

Environmental Health Perspectives 097003-1

A Section 508–conformant HTML version of this article
is available at https://doi.org/10.1289/EHP507.Research

https://doi.org/10.1289/EHP507
https://doi.org/10.1289/EHP507
mailto:Fann.neal@epa.gov
https://doi.org/10.1289/EHP507
http://ehp.niehs.nih.gov/accessibility/
mailto:ehponline@niehs.nih.gov
https://doi.org/10.1289/EHP507


over time and space, or estimate the subsequent effects of these
changes on public health.

The Multi-Ethnic Study of Atherosclerosis and Air Pollution
(MESAAir) developed a statistical model to estimate annual aver-
age PM2:5 concentrations during 1980–2010 at locations through-
out the continental United States (Kim et al. 2017). This national
point prediction model does not rely on inventoried emissions
data, and can be used to estimate long-term average PM2:5 concen-
trations during 1980–2010 at any locations throughout the conti-
nental United States (Kim et al. 2017). This national point
prediction model can be applied to estimate area-level long-term
average PM2:5 concentrations that are representative of population
exposures during 1980, 1990, 2000, and 2010. For the present
analysis, we used this prediction model to estimate decadal trends
in population-representative annual mean PM2:5 exposures to resi-
dents of the contiguous United States, and performed two analyses
to estimate the influence of these multidecade changes in PM2:5
exposure on health. We used the first analysis to estimate the num-
ber of deaths that were avoided due to falling PM2:5 exposures dur-
ing 1980–2010. Because air pollution health impact assessments
report the number of individuals who die prematurely, but not the
degree to which exposure to PM2:5 shortens their life spans, we
also used a life table approach to estimate changes in population
longevity through the year 2050. By estimating the human health
effects of changes in PM2:5 exposures, these two assessments
inform the final stage of the chain of accountability (HEI 2003).

Methods

Estimating Annual Mean PM2:5 Concentrations in 1980,
1990, 2000, and 2010
We estimated county average PM2:5 concentrations using a previ-
ously developed point-wise spatiotemporal prediction model of
PM2:5 annual average concentrations in the contiguous United
States for 1980–2010, as described elsewhere (Kim et al. 2017).
This spatiotemporal prediction model for 1980–2010 was devel-
oped based on PM2:5 annual average concentration data from
1999 through 2010 obtained from the U.S. EPA Federal
Reference Method and the Interagency Monitoring of Protected
Visual Environments (IMPROVE) networks (Hand et al. 2011;
U.S. EPA 2009) and backward projection of pollutant trends. The
model included terms for a spatially varying long-term mean and
a time trend, as well as spatial smoothing of available data from
nearby monitors (Kim et al. 2017). The overall time trend was
estimated using monitoring data for 1999–2010, which was back-
extrapolated to estimate the temporal trend before 1999 based on
extensive sensitivity analyses of trends for sulfate and visibility.
The long-term mean and time trends were characterized in a uni-
versal kriging framework with geographic variables, and spatial
smoothing was modeled by using an exponential covariance
function. External validation of the model using other sources of
PM2:5 data showed good model performance (Kim et al. 2017).
For example, R2 values were >0:7 based on the data for 1990–
1999 from IMPROVE and the Children’s Health Study (Peters
et al. 1999; Sisler and Malm 2000). Incorporating emission and
meteorological data did not significantly improve the perform-
ance of the model (Kim et al. 2017).

Using the spatiotemporal prediction model, we predicted
annual average concentrations for 1980, 1990, 2000, and 2010 at
about 70,000 census tract centroids from the 2010 census,
which we assumed were representative of residence locations.
These census tract centroids were created by using the 2010
census boundary maps downloaded from the National Historical
Geographic Information System website (https://www.nhgis.
org/). We next computed population-weighted county-level

averages of predictions across census tract centroids within a
county for each year, where the population weight was the cen-
sus tract population divided by the total county population.

Estimating the Number of PM2:5-Attributable Deaths
Similar to previous studies (Hubbell et al. 2009a; Levy et al.
2002; Voorhees et al. 2011), we estimated the number of
PM2:5-related deaths using a health impact function. The function
combines relative risk estimates from epidemiological studies
(i.e., concentration–response functions representing the associa-
tion between PM2:5 exposure and mortality) with estimated an-
nual mean PM2:5 concentrations, population data, and baseline
death rates for each county in each year. We derived these esti-
mates using the Benefits Mapping and Analysis Program—
Community Edition (BenMAP-CE, version 1.1, U.S. EPA) tool
as described below.

We estimated the number of PM2:5-related total deaths (yij)
during each year i (i=1980, 1990, 2000, 2010) among adults
aged 30 and above in each county j (j=1, . . . , J where J is the
total number of counties) as

yij =
X

a
yija

yija =m0ija × ðeb�Cij − 1Þ×Pija, [1]

where b is the risk coefficient for all-cause mortality for adults in
association with PM2:5 exposure, m0ija is the baseline all-cause
mortality rate for adults aged a=30–99 in county j in year i
stratified in 10-y age bins, Cij is annual mean PM2:5 concentration
in county j in year i, and Pija is the number of county adult resi-
dents aged a=30–99 in county j in year i stratified into 5-y age
bins.

U.S. Census data for age-stratified population counts and
county boundaries were stored within the BenMAP-CE tool for
3,109 contiguous U.S. counties in 2000 and 2010 (http://www.
factfinder.census.gov); and corresponding data for 3,109 and
3,111 counties in 1980 and 1990, respectively, were obtained
from the U.S. Census (NHGIS Database). County boundaries
change over time, and so we assigned each set of death rates to
the appropriate county boundary file for each year (NHGIS
Database).

For baseline rates of death for adults aged 30–99, we selected
county-level age-stratified all-cause death rates from the Centers
for Disease Control (WONDER) database for each of the four
years (CDC Wonder Database). In each of the four decadal peri-
ods in each county, we matched the age-stratified rate of death
with the population count in that age range.

We used risk coefficients (b) drawn from a broadly cited
long-term air pollution study of the extended American Cancer
Society cohort (American Cancer Society Cancer Prevention
Study II, CPS-II) (Krewski et al. 2009) and an impact assessment
study of the same cohort (Nasari et al. 2016) to define concentra-
tion–response functions (Table 1). The first risk coefficient was
the long-term hazard ratio for all-cause PM2:5-related mortality
reported in the most recent extended analysis of the CPS-II
cohort (ages 30 and older) [hazard ratio 1.06; 95% confidence
interval (CI): 1.04, 1.08 per 10 lg=m3 increase in average PM2:5
concentrations in 1999–2000, adjusted for all individual-level
and ecologic covariates] (Krewski et al. 2009) (Table 1). This
risk coefficient has been applied in several recent air pollution
health impact analyses (U.S. EPA 2011a, 2011c; Fann et al.
2011a, 2011c, 2012, 2013).

The risk coefficient assumes a log-linear relationship
between PM2:5 and mortality over all possible values of PM2:5,
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such that there is no threshold concentration below which
PM2:5-attributable mortality falls to zero. This assumption is
consistent with findings in previous studies, which reported no
evidence of a population-level threshold in the relationship
between long-term exposure to PM2:5 and mortality, and so we
elected not to apply one in this health impact function (Crouse
et al. 2012; Schwartz et al. 2008; U.S. EPA 2009).

There is some evidence suggesting that the assumption of a
log-linear association between PM2:5 and mortality may not hold
at high PM2:5 concentrations (Burnett et al. 2014; Pope et al.
2009b). In addition, the maximum PM2:5 concentration predicted
for counties in the present analysis (about 26lg=m3) is higher
than the maximum exposure in the CPS-II population from which
the Krewski et al. (2009) risk coefficient was derived (about
22lg=m3). Therefore, we derived a second set of attributable
mortality estimates using a nonlinear form of the concentration–
response relationship reported by Nasari et al. (2016) that was
also based on the extended CPS-II study population.

This nonlinear risk function allows the risk of mortality to
vary at different PM2:5 concentrations, conditional on the values
of two parameters, l and s. Nasari et al. (2016) used CPS-II pop-
ulation data to derive a concentration–response curve and 95%
CIs based on an ensemble analysis of models with different val-
ues of l and s, with likelihood-based weights used to summarize
the results. We used the same parameters [six paired values of l
and s that contributed to the models in Nasari et al. (2016); these
covered all weights greater than 0.001] to estimate county-
specific numbers of PM2:5-related deaths.

We performed a Monte Carlo simulation to construct an error
distribution of estimated PM2:5-related death counts using the
standard error of risk coefficients reported in Krewski et al.
(2009) and Nasari et al. (2016), respectively. We estimated total
numbers of deaths in the continental United States for each year
by summing the county-specific estimates, and reported the sums
of the 2.5th and 97.5th percentiles of the Monte Carlo distribu-
tions as 95% CIs.

Estimating the Fraction of Deaths Attributable to PM2:5

We calculated the fraction of all-cause deaths attributable to PM2:5
deaths in each county and year using the following function:

AFij =
yij

Ram0ija ×Pija
[2]

where yij is the estimated number of PM2:5-related all-cause
deaths, m0ija is the age-stratified baseline death rate, and Pija is

the age-stratified population, respectively, in county j in year i.
Death rates for certain age strata were unavailable from the U.S.
Census between 7 and 318 counties in 1980, either because data
were missing or because the number of deaths were too small to
report (e.g., in rural counties with small populations). For these
counties, we imputed county-specific values using the median
age-specific death rates for the United States as a whole. These
imputed values represent about 3.2% of the total number of age-
stratified county-level death rates. State-level estimates were
derived by summing county-specific estimates.

Estimating Gains in Life Years and Life Expectancy at Birth
Attributable to Declines in PM2:5

We used a life table approach (Miller and Hurley 2003) to esti-
mate national-level impacts on the number of years of life
expected to remain at each age, and on life expectancy at birth,
from 1980 to 2050. To estimate changes in life years and life ex-
pectancy values, we used the PopSim life table model, in the soft-
ware BenMAP-CE (version 1.1; U.S. Environmental Protection
Agency) as in a previous U.S. EPA analysis of changes in lon-
gevity associated with the provisions of the Clean Air Act (U.S.
EPA 2011a). PopSim starts with a table reflecting the age-
specific risk of death for a given starting year (i.e., 1980 here)
and then adjusts the baseline hazard to account for the decrease
(or increase) in air pollution-attributable risk of death, using
national population-weighted changes in PM2:5 over time (Table
2) and a risk coefficient (Krewski et al 2009).

In brief, the model uses a Mortality Hazard Adjustment
Factor (MHAF) to adjust gender-specific life table estimates of
age-specific risks of death for a given baseline year (1980 in the
present analysis) to account for the decrease (or increase) in air
pollution–attributable risk of death. For the present analysis, the
MHAF was derived for year i (i=1980, 1981, 1982 through
2050) as

MHAFi =1+
X2050

i0= i
eb×DCi0 − 1ð Þ [3]

where b is the fully adjusted risk coefficient for all-cause mortal-
ity in adults (≥30 y) in association with a 10 lg=m3 increase in
long-term PM2:5 exposure from Krewski et al. (2009), and DCi0 is
the national-scale population-weighted annual mean difference in
PM2:5 concentration (lg=m3) in year i0 (the start year to the year
i) from the previous year.

We calculated the population-weighted annual mean concen-
tration for all counties combined (Ci) in year i as

Table 1. Risk coefficients of all-cause mortality for PM2:5 concentrations applied to the health impact function.

Study Study population bðrÞ Likelihood weightc llg=m3 (percentile)d se

Krewski et al. (2009)a American Cancer Society Population ages ≥30 y 0.005826 (0.000962) – – –
Nasari et al. (2016)b American Cancer Society Cancer Prevention

Study II≥Population ages ≥30 y
0.0930 (0.00984)f 0.036 −5.43 (−5%) 0.1
0.0802 (0.00843) 0.080 1.38 (0%) 0.1
0.0433 (0.00446) 0.460 8.19 (5%) 0.1
0.0398 (0.00412) 0.324 9.04 (10%) 0.1
0.0351 (0.00369) 0.056 10.55 (25%) 0.1
0.0666 (0.00704) 0.044 1.38 (0%) 0.2

aLong-term hazard ratio for all-cause PM2:5-related mortality reported in the most recent extended analysis of the American Cancer Society Cancer Prevention Study II (ages 30 and
older) [hazard ratio 1.06; 95% confidence interval (CI): 1.04, 1.08 per 10 lg=m3 increase in average PM2:5 concentrations in 1999–2000, adjusted for all individual-level and ecologic
covariates).
bThis is the effect coefficient (per 1 lg=m3) and standard error for each of the six log-linear concentration–response functions within a specific concentration range. Adjusted for indi-
vidual-level and ecologic covariates.
cWe weighted the average of the six results using these likelihood weights.
dThis term determines the air quality level at which the c-r function curves.
eParameter s controls the curvature of the weighting function, with larger values yielding shapes with less curvature.
fThis function would be specified in the BenMAP-CE tool as: ð1− ð1=EXP ðBeta � ðLOG ðQ1Þ=ð1+EXP ð−ðQ1− ð−5:43ÞÞ=2:66ÞÞ− LOG ðQ0Þ=ð1+EXP ð−ðQ0−
ð−5:43ÞÞ=2:66ÞÞÞÞÞÞ � Incidence � POP.
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Ci =

P
jCij ×Pij

Pi
[4]

where Cij is the county-average PM2:5 concentration in county j
in year i, Pij is the population in county j in year i, and Pi is the
total population over all counties combined in year i.

MHAF-adjusted survival estimates for each birth cohort in
each year (through 2050) were compared with survival estimates
for the same birth cohort if PM2:5 exposures were held constant
at 1980 levels to estimate the years of life gained, and the change
in overall life expectancy from birth, as a consequence of changes
in PM2:5 exposures between 1980–2010. Our estimates assume a
linear decrease in annual mean PM2:5 concentrations for interven-
ing years between 1980, 1990, 2000, and 2010, and make the
conservative assumption that there will be no further decline in
mean PM2:5 concentrations from 2010 to 2050.

Results

Air Quality
The median estimated county-level annual mean PM2:5 concen-
tration was 14:63lg=m3 in 1980, and decreased by 2–3 lg=m3

during each decade through 2010 (Table 2). The estimated mean
PM2:5 concentration at the 90th percentile decreased by almost
half during 1980–2010 (from 18.66 to 10:38lg=m3). The stand-
ard deviation declined from 4 to 2 over this period, indicating
reduced variation in county-level PM2:5 concentrations in the
contiguous United States. Estimated mean population-weighted
annual mean PM2:5 concentrations (over all counties combined)
decreased from 15:4 lg=m3 in 1980 to 8:8 lg=m3 in 2010 (Table
2), though county-specific population-weighted concentration
increased in some individual counties (such as Los Angeles
County in California and Alleghany County in Pennsylvania)
over this period (Figure S1).

Estimates of Premature Deaths, Life Years, and
Life Expectancy
We estimated that there were 190,000 (95% CI: 130,000–
240,000) premature PM2:5-related deaths in 1980 using the risk
coefficient from Krewski et al. (2009) and 280,000 (95% CI:
130,000–990,000) using the risk coefficients from Nasari et al.

(2016). Corresponding estimates for 2010 were 120,000 (95% CI:
83,000–160,000) and 200,000 (95% CI: 43,000–1,100,000),
respectively (Table 3). Proportional declines in the estimated
numbers of deaths were less than declines in mean population-
weighted PM2:5 concentrations because population sizes
increased and baseline death rates decreased over the same time
period. The estimated fraction of PM2:5-attributable deaths for
the contiguous United States were 8.6–12.7% in 1980 and 5.0–
8.1% in 2010, depending on the risk coefficient used (Table 3).

In 1980, the fraction of PM2:5-attributable deaths, or
PM2:5-attributable mortality, was highest in the eastern United
States and California, and in clusters of counties in western
states, including Colorado, North Dakota, and Oregon (Figure 1).
Statewide estimates of the PM2:5-attributable mortality all indi-
cated declines between 1980 and 2010, though the extent of the
estimated decline varied among the states (Figure 2), and in a
very small number of individual counties, PM2:5-attributable
mortality estimates increased over time (Figure S2). The average
estimated reduction in PM2:5-attributable mortality among states
in the lowest quintile of PM2:5-attributable mortality in 1980
(≤5:0%) was low compared with the estimated reduction among
the states in the highest quintile in 1980 (≥10:1%) (Table S1).

We estimate that the U.S. population will experience an
increase in life expectancy due to reductions in annual mean
PM2:5 concentrations from 1980–2010 (Table 4). Specifically, we
estimate that because of declining PM2:5 concentrations between
1980 and 2010 (and resulting reductions in PM2:5-attributable
mortality), the life expectancy of U.S. residents born in 2050 will
be almost 1 y longer than it would have been if PM2:5 had stayed
constant at 1980 levels (0.94 and 0.87 additional y for men and
women, respectively). In addition, we estimate that, as a group,
U.S. adults ≥30 who are born in 2050 will live 4.4 million more
years than they would have lived if they had been exposed to
PM2:5 at 1980 levels.

Discussion
To our knowledge, this is the first analysis to estimate national
and local changes in ambient PM2:5 concentrations from 1980 to
2010, and subsequent changes in adult mortality, in the contigu-
ous United States. We applied a new approach to estimate histori-
cal PM2:5 concentrations, including concentrations before the

Table 2. Summary statistics of county-specific PM2:5 annual average predictions and nationwide population-weighted PM2:5 annual average predictions
(in lg=m3) in 1980, 1990, 2000, and 2010.

Year

County-specific annual average PM2:5 National
population-weighted
annual average PM2:5n Min 10% 25% 50% 75% 90% Max Mean SD

1980 3,109 3.21 7.79 11.33 14.63 16.97 18.66 25.53 14.01 4.07 15.4
1990 3,111 2.95 6.93 9.72 12.43 14.30 15.81 21.80 11.92 3.34 15.1
2000 3,109 1.67 5.49 7.45 10.58 12.93 14.23 19.41 10.19 3.37 11.4
2010 3,109 1.32 4.81 6.48 8.25 9.36 10.38 13.36 7.90 2.10 8.8

Note: 10%, 25%, 50%, 75%, and 90% are percentiles. SD, standard deviation.

Table 3. Estimated numbers and fractions of PM2:5-attributable deaths in adults in the continental United States in 1980, 1990, 2000, and 2010.

Year

Estimated numbers of PM2:5 attributable deaths
(95% confidence interval)a

Estimated percentage of total deaths
attributable to PM2:5

Krewski et al. (2009)b Nasari et al. (2016)c Krewski et al. (2009)b Nasari et al. (2016)c

1980 190,000 (130,000–240,000) 280,000 (130,000–990,000) 8.63% 12.74%
1990 170,000 (110,000–220,000) 260,000 (120,000–910,000) 8.39% 12.69%
2000 140,000 (98,000–190,000) 230,000 (79,000–990,000) 6.40% 10.21%
2010 120,000 (83,000–160,000) 200,000 (43,000–1,100,000) 5.02% 8.13%
aEstimates rounded to two significant figures.
bCounts of premature deaths estimated using a risk coefficient reported in the Krewski et al. (2009) long-term cohort study.
cCounts of premature deaths estimated using risk coefficients reported in the Nasari et al. (2016) long-term cohort study.
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spatially extensive PM2:5 monitoring network was fully imple-
mented in 1999. Using this approach, we estimated that annual
average population-weighted PM2:5 exposures for the United
States as a whole dropped by nearly half between 1980– 2010,
while the U.S. population grew from 227 million to 309 million
people (U.S. Census Bureau 2010).

Our estimates indicate that the human health burden of PM2:5
declined as exposures decreased between 1980 and 2010, with a
30–40% reduction in the estimated number of PM2:5-attributable
deaths depending on the mortality risk coefficient applied
(Krewski et al. 2009 or Nasari et al. 2016). Our estimates of
the number of PM2:5-attributable deaths in 2000 and 2010
(140,000 and 120,000, respectively) are generally consistent
with estimates reported by others (Anenberg et al. 2010;
Caiazzo et al. 2013; Fann et al. 2011a, 2013). For example,

Anenberg et al. (2010) estimated that PM2:5 exposures were
responsible for approximately 124,000 cardiopulmonary deaths
and 17,000 lung cancer deaths the United States and Canada
in 2000, while Fann et al. (2011) estimated that PM2:5 expo-
sures caused approximately 120,000 premature deaths in the
United States in 2005.

Analyses using the pooled Nasari et al. (2016) all-cause risk
coefficients yielded consistently larger estimates of PM2:5-related
deaths than analyses that used the all-cause risk coefficient from
Krewski et al. (2009)—generally by a margin of about 90,000
deaths—and 95% CIs were much wider as well. However,
regardless of the risk coefficient used, estimated numbers of pre-
mature deaths decreased between 1980 and 2010. Although we
had anticipated that mortality estimates based on the Nasari et al.
(2016) risk coefficients would decline at an increasing rate over
time (given the slight sigmoidal shape of the concentration–
response relationship), this did not occur, probably because the
slope of the concentration–response curve was roughly constant
over the range of estimated annual mean population-weighted
PM2:5 concentrations during 1980–2010 (Table 2).

Air pollution health impact assessments for PM2:5 often report
estimated numbers of individuals who die prematurely due to
PM2:5 exposures, but not the degree to which exposure shortened
their life spans. For this reason, we also estimated the additional
life years gained and life expectancy at birth. Declining PM2:5
concentrations over the three-decade period were associated with
a cumulative increase in the estimated number of life years
gained over time, such that falling PM2:5 concentrations between
1980 and 1990 were estimated to result in thousands of additional
life years by 1990, hundreds of thousands of additional life years
by 2010, and millions of additional life years by 2050 (Table 3).
Our estimates assumed that PM2:5 concentrations will remain
constant from 2010–2050, but this may be a conservative
assumption given the likelihood of further reductions in PM2:5
exposures due to local, state, and federal air quality policies
implemented and promulgated after 2010 (U.S. EPA, 2010,
2011a, 2011b, 2011c, 2012a, 2012b, 2014a, 2014b).

It is not possible to directly compare our estimates with previ-
ous estimates given differences in analytic methods, baseline air
quality data, and other inputs. Our estimate of an additional 0.2 y
of life expectancy at birth for U.S. residents born in 2010 (rela-
tive to a counterfactual 2010 birth cohort with PM2:5 exposures
fixed at 1980 levels) is smaller than previous estimates based on
measured PM2:5 concentrations during a similar time frame. For
example, using different methods than those employed here,
Pope et al. (2009a) estimated an average additional 0.4 y of life
expectancy at birth in the year 2000 among populations living in
211 counties from improved air quality between 1980 and 2000.
Correia et al. (2013) estimated an additional 0.56 y of life expect-
ancy at birth due to improved PM25 air quality between 1980 and
2007. Their longer years of life expectancy could be in part due
to their approach using statistical models, while this analysis
employed a life table approach.

Despite our conservative assumption holding future PM2:5
concentrations at 2010 levels, we estimate that reductions in
PM2:5 exposures from 1980–2010 will increase the life expect-
ancy of U.S. residents born in 2050 by almost 1 y relative to what
their estimated life expectancy would have been if they had been
exposed to PM2:5 concentrations at 1980 levels. If PM2:5 concen-
trations continue to decline as states implement provisions of the
Clean Air Act, we would expect an even greater improvement in
life expectancy due to declining PM2:5 exposures.

While our analysis clearly demonstrates that PM2:5 concentra-
tions fell over this 30-y period, it is difficult to attribute this
reduction to specific policy interventions. Although many factors

Figure 1. The fraction of total all-cause deaths attributable to PM2:5 in U.S.
counties in the years 1980, 1990, 2000, and 2010 among adults ages 30 and
older (calculated using risk coefficient from Krewski et al. 2009). State and
county boundaries for each year drawn according to Census Topologically
Integrated Geographic Encoding and Referencing (TIGER)/Line files as
reported by the Minnesota Population Center National Historical Geographic
Information System (NHGIS Database).
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are likely to have contributed to the decline in PM2:5 concentra-
tions from 1980–2010, federal air quality policies are likely to
have played an important role (Chestnut and Mills 2005; U.S.
EPA 2011a). The Acid Rain program and the Clean Air Interstate
and Cross-State Air Pollution rules each contributed to reductions
in SO2 concentrations, which is a key precursor to forming PM2:5
(Hubbell et al. 2009b). Other rules contributed to reductions in
precursor emissions from light duty, heavy duty, and nonroad
vehicles (Fann et al. 2012; U.S. EPA 2014a).

Our estimates of PM-related mortality were calculated rela-
tive to a baseline rate of death in each decade. There is ample evi-
dence that the life expectancy of the U.S. population has been
increasing over time (Bell and Miller 2005; CDC 2011), and the
Social Security Administration reported a particularly sharp
decline in the number of cardiovascular deaths between 1981 and
2001. Other things being equal, a decline in the death rate will
yield smaller estimates of air pollution related deaths in a health
impact assessment, suggesting that some fraction of the reduced

PM2:5 related deaths is partly a result of the population becoming
healthier, more resilient, and less susceptible to the risk of
PM2:5-related death. On the other hand, previous studies using
county-level data have reported that reductions in PM2:5 concen-
trations were associated with lower death rates, even after
changes in demographic and socioeconomic characteristics were
accounted for (Correia et al. 2013; Pope et al. 2009a).

Our estimates are subject to important uncertainties and limita-
tions. We derived CIs for our estimates of PM2:5-related mortality
using an approach that incorporated uncertainty in the concentra-
tion–response estimates from previous studies due to random
error, but we did not account for uncertainty due to other sources
of error. For example, the model used to estimate historical levels
of PM2:5 before the PM2:5 monitoring network was deployed had
R2s of 0.11–0.40 in 1980 and 1981, indicating poor predictive per-
formance. Monitoring data from the Inhalable Particulate
Network (IPN), which were used as the observed comparison data
for validating our model predictions, were limited to data from

Figure 2. Estimated reduction in PM2:5-attributable Deaths in 48 U.S. states among adults Aged 30 and older between 1980 and 2010. Note: AL = Alabama;
AR = Arkansas; AZ = Arizona; CA = California; CO = Colorado; CT = Connecticut; DE = Delaware; FL = Florida; GA = Georgia; IA = IOWA; ID =
Idaho; IL = Illinois; IN = Indiana; KS = Kansas; KY = Kentucky; LA = Louisiana; MA = Massachusetts; MD = Maryland; ME = Maine; MI = Michigan;
MN = Minnesota; MO = Missouri; MS = Mississippi; MT = Montana; NC = North Carolina; ND = North Dakota; NE = Nebraska; NH = New Hampshire;
NJ = New Jersey; NM = New Mexico; NY = New York; OH = Ohio; OK = Oklahoma; OR = Oregon; PA = Pennsylvania; RH = Rhode Island; SC = South
Carolina; SD = South Dakota; TN = Tennessee; TX = Texas; UT = Utah; VA = Virginia; VT = Vermont; WA = Washington; WI = Wisconsin; WV = West
Virginia; WY = Wyoming. The region of the United States corresponds to seven clusters of states that are proximate to one another. The right-hand end of
each arrow denotes the fraction of deaths due to PM2:5 in 1980, while the left-hand side of each arrow shows the fraction of deaths due to PM2:5 in 2010.
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only 6 and 12 IPN sites in 1980 and 1981, respectively (after we
applied site inclusion criteria). Therefore, limitations of the meas-
ured data may have been partly responsible for the apparent defi-
cits in model performance. However, we cannot rule out the
possibility that our estimates of PM2:5-attributable risks were less
accurate for the early 1980s than more recent years, and these
uncertainties are not reflected in our estimates.

In addition, our estimates of associations between exposures
and mortality at the county level did not account for the potential
influence of exposures that occurred outside of the county where
each death occurred, including exposures resulting from activities
outside of the county of residence, as well as changes in resi-
dence from one county to another. An analysis of MESA Air
cohort data using the same exposure model indicated that model-
based predictions of average PM2:5 concentrations over a 30-y
period were more consistent with 1-y average predictions in 2000
among participants who did not move during the study period
compared with participants who moved at least once (r=0:89 vs.
0.86, respectively), suggesting an effect of residential mobility on
the accuracy of exposure estimates (Kim et al. 2017).

We used age-stratified population counts and all-cause death
rates matched to each year to account for changes in population
characteristics between 1980 and 2010. However, all-cause death
rates for 1980 were suppressed for counties with low death
counts, and our use of national median values for missing age-
specific mortality data in these counties may have reduced the ac-
curacy of our estimates of PM2:5 attributable deaths in 1980.

We used concentration–response relationships from epide-
miological studies to relate historical changes in fine particle
concentrations to changes in the estimated risk of premature
death, which implicitly assumed that the association between
PM2:5 and mortality was stable over the 30-y study period.
However, modification of the association by time-varying fac-
tors, such as the chemical composition of PM mass, population
activity patterns, housing stock, medical care access and effec-
tiveness, and the prevalence of comorbid conditions, would
also affect the accuracy of our estimates. Moreover, we esti-
mated PM-related deaths without assuming a no-risk concentra-
tion threshold or accounting for natural background exposures;
if a minimum risk threshold exists, our estimates will be
inflated. Finally, the maximum annual mean PM2:5 concentra-
tion experienced by the Krewski et al. (2016) study population
was lower than the maximum concentration predicted by our
model for the year 1980. This adds to uncertainty about the

validity of the Krewski et al. (2009) concentration–response
estimate for estimating PM-related deaths in 1980, though the
potential consequences of this, if any, are unpredictable.

Conclusions
While subject to important limitations and uncertainties, our esti-
mates suggest that the U.S. population has experienced signifi-
cantly improved health, with fewer deaths and prolonged life
expectancy at birth, as a result of declining exposures to fine par-
ticles in ambient air pollution between 1980 and 2010. In nearly
all locations, estimated numbers of excess deaths and proportions
of total deaths attributed to fine particles declined, consistent
with a reduced public health burden. Future research might
extend these findings by addressing whether the benefits of
declining PM2:5 levels vary among different population groups,
and by projecting exposure estimates further into the future.
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